

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released ¹³⁴Cs and ¹³⁷Cs

M. Aoyama¹, M. Uematsu², D. Tsumune³, and Y. Hamajima⁴

Received: 9 November 2012 - Accepted: 17 December 2012 - Published: 8 January 2013

Correspondence to: M. Aoyama (maoyama@mri-jma.go.jp)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Printer-friendly Version

Interactive Discussion

10, 265-283, 2013

134Cs M. Aoyama et al.

> Introduction **Abstract**

Conclusions References

Title Page

BGD

Pathway of plume of

Fukushima ¹³⁷Cs and

Tables Figures

Back Close

Full Screen / Esc

¹Meteorological Research Institute, Tsukuba, Japan

²Ocean Research Institute, University of Tokyo, Tokyo, Japan

³Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan

⁴Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan

Printer-friendly Version

Interactive Discussion

Abstract

¹³⁴Cs and ¹³⁷Cs were released to the North Pacific Ocean by two major likely pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. High density observations of ¹³⁴Cs and ¹³⁷Cs in the surface water were carried out by 17 cruises of cargo ships and several research vessel cruises since March 2011 till March 2012. Main body of radioactive surface plume of which activity was exceed 10 Bq m⁻³ had been travelling along 40° N, and reached International Date Line on March 2012 one year after the accident. A feature was that the radioactive plume was confined along 40° N when the plume reached International Date Line. A zonal speed of the radioactive plume was estimated to be about 8 cm s⁻¹ which was consistent with zonal speeds derived by Argo floats and satellite observations at the region.

Introduction

On 11 March 2011, an extraordinary earthquake of magnitude 9.0 centred about 130 km off the Pacific coast of Japan's main island, at 38.3° N, 142.4° E, was followed by a huge tsunami with waves reaching up to 40 m height in Iwate region and about 10 m in Fukushima region (The-2011-Tohoku-Earthquake-Tsunami-Joint-Survey-Group, 2011; Mori et al., 2011). These events caused the loss of about 16 000 lives, missing of about 4000 lives and extensive damage. One of the consequences was a station blackout (total loss of AC electric power) at the Tokyo Electric Power Company (hereafter TEPCO) Fukushima Dai-ichi Nuclear Power Plant (hereafter FNPP1). The station blackout developed into a disaster that left three of the six FNPP1 reactors heavily damaged and caused radionuclides to be discharged into the air and ocean (Chino et al., 2011; Morino et al., 2011; Stohl et al., 2012; Tsumune et al., 2012; Kawamura et al., 2011; Estournel et al., 2012).

Discussion Paper

Full Screen / Esc

266

10, 265-283, 2013

BGD

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

M. Aoyama et al.

Title Page

Introduction **Abstract**

Conclusions References

Tables

Figures

14

Close

¹³⁴Cs and ¹³⁷Cs were released to the North Pacific Ocean by two major likely pathways, direct discharge from the FNPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. ¹³⁴Cs and ¹³⁷Cs activities in the surface water in the North Pacific Ocean were already reported (Aoyama et al., 2012a; Honda et al., 2012) and those ranged a few to 1000 Bqm⁻³ in April–May 2011. Distributions of ¹³⁴Cs and ¹³⁷Cs activities in the surface water off Honshu and coastal stations around Japan during the period from April 2011 to November 2011 (Inoue et al., 2012a,b; Aoyama et al., 2012a; Buesseler et al., 2011, 2012) were also reported and discussed.

During the first month of release period, 134 Cs and 137 Cs activities ratios were very close to one (0.99 ± 0.03 for FNPP1 north and south discharge channels) and extremely uniform (Buesseler et al., 2011). The presence of 134 Cs is a unique isotopic signature for tracking these waters and calculating mixing ratios. In the oceans, the behaviour of caesium is thought to be conservative, i.e. it is soluble (<1% attached to marine particles) and is carried primarily with ocean waters and as such has been used as a tracer of water mass mixing and transport (Buesseler et al., 2011).

Results of observations of ¹³⁴Cs and ¹³⁷Cs activities in surface water at Hasaki, a coastal station 180 km south of the FNPP1 accident site April 2011 to December 2011 was presented, and the maximum in radiocaesium activity, around 2000 Bqm⁻³, at Hasaki was observed in June 2011, representing a delay of two months from the corresponding maximum in April 2011 at FNPP1. Directly discharged ¹³⁴Cs and ¹³⁷Cs were transported dominantly southward along the coastline of north-eastern Honshu. The reasons for the two-month delay at Hasaki are not yet clear, however clockwise current associated with a warm water eddy of which center located at 36.5° N, 141.4° E off lwaki between Onahama and Hasaki in mid of May 2011 might prevent southward transport of ¹³⁴Cs and ¹³⁷Cs released from FNPP1 to Hasaki until the end of May 2011 (Aoyama et al., 2012b).

Fukushima-derived ¹³⁴Cs and ¹³⁷Cs were detected throughout waters 30–600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≯l

•

Back Close

Full Screen / Esc

Printer-friendly Version

Current acting as a southern boundary for transport in June 2011. They calculate a total inventory of $1.9-2.1\,\text{PBq}^{137}\text{Cs}$ in an ocean area of $150\,000\,\text{km}^2$ (Buesseler et al., 2012).

However, there is no report of ¹³⁴Cs and ¹³⁷Cs activities in the surface water in the North Pacific Ocean after June 2011. High density sampling of surface seawater to measure ¹³⁴Cs and ¹³⁷Cs activities were carried out by 17 cargo ships as Voluntary Observing Ship (here after VOS) cruises and several research vessel cruises since March 2011 till March 2012 in the North Pacific Ocean.

In this paper we present the results of our measurements of ¹³⁴Cs and ¹³⁷Cs activities in the surface water in sea area both close to the site and the North Pacific Ocean based on the monitoring data and on our observation, respectively. We also discuss these behaviours of the radioactive plume in the North Pacific Ocean through March 2012.

2 Sampling and measurements

We collected 2 L surface seawater samples at more than 300 stations as shown in Fig. S1. The samples were treated by an improved ammonium phosphomolybdate, AMP, procedure developed by one of the authors (Hirose et al., 2005; Aoyama and Hirose, 2008). This improvement of AMP procedure realized that the weight yield of AMP/Cs compound basically exceed 99 % for 2 L samples as well as radiochemical yield of radiocaesium. And their activities of AMP/Cs compound were measured at the Ogoya Underground Facility of the Low Level Radioactivity Laboratory of Kanazawa University using high-efficiency, well-type ultra low background Ge-detectors (Hamajima and Komura, 2004). One example of the best performance at this underground facility was reported that a detection limit of ¹³⁷Cs is 0.18 mBq for a counting time of 10 000 min (Hirose et al., 2005). Therefore, this development permits us to use the residue of nuclear weapon tests as useful tracers in oceanography (Aoyama et al., 2011; Povinec et al., 2011; Sanchez-Cabeza et al., 2011) and to measure released

BGD

10, 265–283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I⁴ ►I

Back Close

Full Screen / Esc

Printer-friendly Version

¹³⁴Cs and ¹³⁷Cs from the FNPP1 in 2L samples of which activity was less than 1 Bg m⁻³, too.

Because reagents can add trace levels of radioactivity, skewing small volume measurements, it is important to know the specific activity of analytes such as $^{137}\mathrm{Cs}$ in the reagents. The $^{137}\mathrm{Cs}$ activity in CsCl was measured to be $0.03\,\mathrm{mBqg}^{-1}$ by using extremely low background γ –spectrometry and we neglect this amount of $^{137}\mathrm{Cs}$ because we use only 0.26 g as carrier. The $^{137}\mathrm{Cs}$ activity in AMP we used was 0.024 mBqg $^{-1}$ and we subtract corresponding amount of $^{137}\mathrm{Cs}$ in the AMP used to extract radiocaesium from the samples because we use 4–6 g for extraction. There is no serious contamination of $^{137}\mathrm{Cs}$ from other reagents. For $^{134}\mathrm{Cs}$ contaminations, we did not observe any $^{134}\mathrm{Cs}$ contaminations from the reagents.

3 Results

3.1 Trend of ¹³⁴Cs and ¹³⁷Cs close to the accident site

In addition to our own data, we compiled monitoring data of the Ministry of Education, Culture, Sports, Science and Technology (hereafter MEXT) and TEPCO to discuss about trend of source term at the accident site. The measured ¹³⁷Cs concentration in a seawater sample near the FNPP1 site reached 68 MBqm⁻³ on 7 April (Buesseler et al., 2011). An analysis of ¹³⁷Cs concentrations and ¹³¹I/¹³⁷Cs activity ratios suggest that major direct release of ¹³⁷Cs from the FNPP1 reactors occurred for 12 days, from 26 March to 6 April 2011 (Tsumune et al., 2012) then it decreased much but it was still continuing until July 2011 (Buesseler et al., 2011) and thereafter. During the period from August 2011 to July 2012, the activities of ¹³⁴Cs and ¹³⁷Cs at near FNPP1 site were kept around 1000–10 000 Bqm⁻³, which means that direct discharge becomes very small but still continues until July 2012 as shown in Fig. S2.

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

→

Back Close
Full Screen / Esc

Printer-friendly Version

BGD 10, 265–283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Full Screen / Esc

Back

Printer-friendly Version

Close

Interactive Discussion

3.2 In the North Pacific Ocean

Before the FNPP1 accident, ¹³⁷Cs was already exist which was originated from the nuclear weapon tests conducted in the late 1950s and in the early 1960s (Aoyama et al., 2011; Aoyama and Hirose, 2008). In the western North Pacific Ocean, ¹³⁷Cs activity in surface water was 10-100 Bqm⁻³ in the late 1950s and in the early 1960s, then it decreased gradually and the ¹³⁷Cs activity in surface water decreased to around a few Bgm⁻³ (Aoyama et al., 2006, 2011). In 1986 Chernobyl accident, however, a contribution of atmospheric deposition of Chernobyl derived ¹³⁷Cs in the North Pacific Ocean was around 3% of total deposition derived from global fallout before 1986 (Aoyama et al., 1986). Therefore, the effect of Chernobyl accident in the North Pacific Ocean is negligible. Before the FNPP1 accident, distribution and inventory of ¹³⁷Cs which originated from atmospheric weapons tests had been studied in the Pacific Ocean since the late 1950s and the 137 Cs inventory in the North Pacific Ocean was $290 \pm 30 \, \text{PBq}$ in January 1970 based on 10° by 10° mesh data of the ¹³⁷Cs deposition (Aoyama et al., 2006). In 2003, ¹³⁷Cs inventory in the North Pacific Ocean was 86 PBg by the model study (Tsumune et al., 2011) and 85 PBg by the observation (Aoyama et al., 2012a), then it decreased to 69 PBq in 2011 because due to decay (Aoyama et al., 2012a). In 2000s just before the FNPP1 accident, the ¹³⁷Cs activity in surface water was a few Bqm⁻³ and showed less change compared with the decreasing trend of ¹³⁷Cs activity we observed before 2000. A horizontal distribution of ¹³⁷Cs in the 2000s in the surface water showed a very homogeneous distribution, but relatively high ¹³⁷Cs activity regions in surface water were observed in the western part of the subtropical gyre in both the North Pacific Ocean and the South Pacific Ocean where ¹³⁷Cs activity exceeded 2 Bq m⁻³ and 1.5 Bq m⁻³, respectively (Aoyama et al., 2012a).

After the FNPP1 accident, both ¹³⁴Cs and ¹³⁷Cs are observed in a wide area in the North Pacific Ocean as shown in Table 1 and Figs. S3–S6. The differences between ¹³⁴Cs and ¹³⁷Cs activities observed after the FNPP1 accident were consistent with pre-existing ¹³⁷Cs originated from the nuclear weapons tests as described above.

Conclusions

References

Tables

Close

Full Screen / Esc

Interactive Discussion

It is also clear that ¹³⁴Cs and ¹³⁷Cs activities ratios when we take into account the pre-existing ¹³⁷Cs were close to 1 which is also consistent with observed ¹³⁴Cs and 137 Cs activities ratio of 0.99 ± 0.03 at very close to the source region of the FNPP1 (Buesseler et al., 2011). These are clear evidences that observed ¹³⁴Cs and excess $^{\prime}$ Cs originated from the FNPP1 accident as shown in Table 1. The horizontal distribution of FNPP1-origin ¹³⁴Cs in the western North Pacific Ocean except just in front of the FNPP1 site showed that the high concentration area located close to the FNPP1 accident site which might have received both atmospheric deposition - showing good consistency with previous atmospheric transport model study (Honda et al., 2012) and direct discharge (Tsumune et al., 2012) from the FNPP1 site. We see another high concentration area near the International Date Line in April-June 2011 as shown in Fig. S3 (upper panel). This high concentration region may be more likely explained by atmospheric deposition because of the transport distance compared to surface current. At the sea area east of the International Date Line north of 40°N in the Pacific Ocean in April 2011, ¹³⁴Cs activity in the surface water less than 12 Bg m⁻³.

In July-September 2011, relatively high concentration area for which ¹³⁴Cs activity exceed 10 Bg m⁻³ moved eastward and arrived at 165° E as shown in Fig. S4. In October-December 2011, relatively high concentration area for which ¹³⁴Cs activity exceed 10 Bgm⁻³ moved more east and arrived at 172° E. along 40° N as shown in Fig. S5. In January–March 2012, it arrived International Date Line as shown in Fig. S6.

Discussions

The atmospheric deposition occurred mainly in March 2011 (Chino et al., 2011), therefore, ¹³⁴Cs and ¹³⁷Cs activity in surface water derived by atmospheric deposition except close area of the FNPP1 site should decrease by dispersion with time rapidly, while eastward movement of radioactive plume relatively higher activity exceed 10 Bq m⁻³ was observed as shown in Figs. 1 and S3-S6. The radioactive plume were formed by the atmospheric deposition close to the FNPP1 site and direct discharge. It is

10, 265-283, 2013

BGD

Pathway of plume of Fukushima 137Cs and 134Cs

M. Aoyama et al.

Title Page

Abstract

Introduction

Figures

Back

Printer-friendly Version

interesting to estimate a zonal speed of radioactive plume based on our observations. A feature was that the radioactive plume was confined along 40° N when the plume reached International Date Line as stated in Sect. 3.2. The radioactive plume travelled 1800 km (from 160° E to 178° E) for 270 days (9 months) (Fig. 1), therefore an average zonal speed (u) of the surface radioactive plume was calculated to be about 8 cm s⁻¹ which was consistent with a speed of reported surface current of 4-16 cm s⁻¹ at the region (Maximenko et al., 2009).

Eleven Argo floats were deployed off Fukushima on 31 March-13 April at 37.001° N-37.709° N, 141.250° E-141.399° E after the accident (Argo-Information-Center). Nine of 11 floats were still operational until around January-March 2012, therefore we can compare our observations and trajectories of 9 Argo floats. In Figs. S3-S6, positions of Argo floats at mid time of each three months periods (Table S1) were plotted marked "A". In April-June 2011, a distribution of Fukushima radioactive plume and positions of Argo floats showed some discrepancy because the distribution of Fukushima radioactive plume was formed by both combination of atmospheric deposition and direct discharge as stated in Sect. 3.2. In July-September 2011 positions of Argo floats were moved more east up to 165° E, although observed results were so sparse radioactive plume also moved to east as well as Argo floats as shown in Fig. S4. Three months later, both Fukushima radioactive plume and Argo floats moved more east up to 172° E as shown in Fig. S5. Almost one year after the accident, again we observed that both Fukushima radioactive plume and Argo floats moved more east up to 180° E as shown in Fig. S6. A zonal speed, u, based on trajectories of nine Argo floats between May 2011 to August 2011 ranged from 0.1 cm s⁻¹ to 15.6 cm s⁻¹ with an average of 7.8 cm s⁻¹ as shown in Table S2. A zonal speed, u, based on trajectories of nine Argo floats between August 2011 to November 2011 ranged from -1.9 cm s⁻¹ to 20.1 cm s⁻¹ with an average of 7.7 cm s⁻¹ (Table S2). It between November 2011 to February 2012 ranged from -1.7 cms⁻¹ to 16.7 cms⁻¹ with an average of 8.9 cms⁻¹ (Table S2). These zonal speeds by Argo floats showed excellent agreement with zonal speed of Fuksuhima radioactive plume, about 8 cm s⁻¹, derived by our observations.

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

M. Aoyama et al.

Title Page Introduction **Abstract**

Conclusions References

Figures

Tables

Back Close

Full Screen / Esc

Printer-friendly Version

Therefore we can say that deploying Argo floats just after nuclear reactor accidents near coast line might be good to trace radioactive plume which moves in the surface layer.

We can also assume that Fukushima radioactive plume moved with surface water. Therefore it is also interested to compare between surface current speed by satellite observations and actual movement of Fukushima radiocaesium obtained by our observations as stated in Sect. 3.2. We look at surface current observation by satellite (Bonjean and Lagerloef, 2002) along 40° N (38° N– 42° N) as shown in Tables S3–1 and S3–2. As shown in Tables S3–1 and S3–2, zonal speed during the period from April 2011 to March 2012 ranged from $1.5 \, \mathrm{cm \, s^{-1}}$ to $7.4 \, \mathrm{cm \, s^{-1}}$. The average speed estimated by advection of Fukushima radioactivity was $8 \, \mathrm{cm \, s^{-1}}$ in average and this zonal speed by observation showed good agreement with satellite derived surface current as well as the zonal speed obtained by movement of Argo floats. It should be also noted that there exist larger variability in the radioactive plume as shown in Fig. S7. Zonal speed, u, and meridional speed, v, showed temporal and spatial variation as shown in Fig. S7, then resulted positions of Argo floats also showed large variability which indicates that the movement of radioactive plume varied as well.

5 Conclusions

¹³⁴Cs and ¹³⁷Cs were released to the North Pacific Ocean by two pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. High density observations of ¹³⁴Cs and ¹³⁷Cs in the surface water were carried out by 17 VOS cruises and several research vessel cruises since March 2011 till March 2012. The main body of radioactive surface plume of which activity was larger than 10 Bq m⁻³ had been travelling along 40° N, and reached The International Date Line on March 2012 one year after the accident. A feature was that the radioactive plume was confined along 40° N when the plume reached The International Date Line. A zonal speed of the surface plume was estimated to be

BGD

10, 265–283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Abstract Introduction

Title Page

Conclusions References

Tables

Figures

4 -

Back Close

Full Screen / Esc

Printer-friendly Version

about 8 cm s⁻¹ which was consistent with a zonal speed of surface current at the region

Supplementary material related to this article is available online at: http://www.biogeosciences-discuss.net/10/265/2013/ bgd-10-265-2013-supplement.pdf.

observed by Argo floats and satellite

Acknowledgements. The authors would like to thank the commercial ship company, captains and crew of 17 VOS ships for their voluntary work to collect seawater samples. The authors also thank Aoi Mori, Yukiko Yoshimura, Tomoko Kudo and Shoko Shimada for their work to create database, tables and figures.

References

25

- Aoyama, M. and Hirose, K.: Radiometric determination of anthropogenic radionuclides in seawater, in: Analysis of Environmental Radionuclides, First ed., edited by: Pavel, P. P., Radioactivity in the Environment, Volume 11, Elsevier, Hungary, 137-162, 2008.
- Aoyama, M., Hirose, K., Suzuki, Y., Inoue, H., and Sugimura, Y.: High level radioactive nuclides in Japan in May, Nature, 321, 819-820, 1986.
- Aoyama, M., Hirose, K., and Igarashi, Y.: Re-construction and updating our understanding on the global weapons tests 137Cs fallout, J. Environ. Monitor., 8, 431-438, doi:10.1039/b512601k, 2006.
- Aoyama, M., Fukasawa, M., Hirose, K., Hamajima, Y., Kawano, T., Povinec, P. P., and Sanchez-Cabeza. J. A.: Cross equator transport of 137Cs from North Pacific Ocean to South Pacific Ocean (BEAGLE2003 cruises), Prog. Oceanogr., 89, 7-16, doi:10.1016/j.pocean.2010.12.003, 2011.
- Aovama, M., Tsumune, D., and Hamaiima, Y.: Distribution of ¹³⁷Cs and ¹³⁴Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident, J. Radioanal. Nucl. Ch., 1-5, doi:10.1007/s10967-012-2033-2, 2012a.

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

M. Aoyama et al.

Title Page Introduction **Abstract**

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Paper

Aoyama, M., Tsumune, D., Uematsu, M., Kondo, F., and Hamajima, Y.: Temporal variation of ¹³⁴Cs and ¹³⁷Cs activities in surface water at stations along the coastline near the Fukushima Dai-ichi Nuclear Power Plant accident site, Japan, Geochem. J., 46, 321-325, 2012b.

Bonjean, F. and Lagerloef, G. S. E.: Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean, J. Phys. Oceanogr., 32, 2938-2954, doi:10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2, 2002.

Buesseler, K., Aoyama, M., and Fukasawa, M.: Impacts of the Fukushima nuclear power plants on marine radioactivity, Environ. Sci. Technol., 45, 9931-9935, doi:10.1021/es202816c, 2011.

Buesseler, K. O., Jayne, S. R., Fisher, N. S., Rypina, I. I., Baumann, H., Baumann, Z., Breier, C. F., Douglass, E. M., George, J., and Macdonald, A. M.: Fukushima-derived radionuclides in the ocean and biota off Japan, P. Natl. Acad. Sci. USA, 109, 5984-5988, 2012.

Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H.: Preliminary estimation of release amounts of ¹³¹I and ¹³⁷Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere, J. Nucl. Sci. Technol., 48, 1129-1134, 2011.

15

Estournel, C., Bosc, E., Bocquet, M., Ulses, C., Marsaleix, P., Winiarek, V., Osvath, I., Nguyen, C., Duhaut, T., Lyard, F., Michaud, H., and Auclair, F.: Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters, J. Geophys. Res., 117, C11014, doi:10.1029/2012JC007933, 2012.

Hamajima, Y. and Komura, K.: Background components of Ge detectors in Ogoya underground laboratory, Appl. Radiat. Isotopes, 61, 179–183, doi:10.1016/j.apradiso.2004.03.041, 2004.

Hirose, K., Aoyama, M., Igarashi, Y., and Komura, K.: Ultra-sensitive mass spectrometric and other methods applied to environmental problems, J. Radioanal. Nucl. Ch., 263, 349-353, doi:10.1007/s10967-005-0593-0. 2005.

Honda, M. C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., and Saino, T.: Dispersion of artificial caesium-134 and-137 in the western North Pacific one month after the Fukushima accident, Geochem. J., 46, e1-e9, 2012.

Inoue, M., Kofuji, H., Hamajima, Y., Nagao, S., Yoshida, K., and Yamamoto, M.: 134Cs and ¹³⁷Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait, northeastern

BGD

10, 265–283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

M. Aoyama et al.

Title Page

Introduction Abstract

Conclusions References

Tables

Figures

Back

14

Close

Full Screen / Esc

Japan, after Fukushima Dai-ichi Nuclear Power Plant accident, J. Environ. Radioactiv., 111, 116-119, doi:10.1016/j.jenvrad.2011.09.012, 2012a.

Inoue, M., Kofuji, H., Nagao, S., Yamamoto, M., Hamajima, Y., Fujimoto, K., Yoshida, K., Suzuki, A., Takashiro, H., and Hayakawa, K.: Low levels of ¹³⁴Cs and ¹³⁷Cs in surface seawaters around the Japanese Archipelago after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011, Geochem. J., 46, 311-320, 2012b.

Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., and Awaji, T.: Preliminary numerical experiments on oceanic dispersion of ¹³¹I and ¹³⁷Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J. Nucl. Sci. Technol., 48, 1349-1356, 2011.

Maximenko, N., Niiler, P., Centurioni, L., Rio, M.-H., Melnichenko, O., Chambers, D., Zlotnicki, V., and Galperin, B.: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Ocean. Tech., 26, 1910-1919, doi:10.1175/2009itecho672.1, 2009.

Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H.: Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett., 38, L00G14, doi:10.1029/2011gl049210, 2011.

Morino, Y., Ohara, T., and Nishizawa, M.: Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011, Geophys. Res. Lett., 38, L00G11, doi:10.1029/2011gl048689, 2011.

Povinec, P. P., Aoyama, M., Fukasawa, M., Hirose, K., Komura, K., Sanchez-Cabeza, J. A., Gastaud, J., Ješkovský, M., Levy, I., and Sýkora, I.: 137Cs water profiles in the South Indian Ocean – an evidence for accumulation of pollutants in the subtropical gyre, Prog. Oceanogr., 89, 17-30, doi:10.1016/j.pocean.2010.12.004, 2011.

Sanchez-Cabeza, J. A., Levy, I., Gastaud, J., Eriksson, M., Osvath, I., Aoyama, M., Povinec, P. P., and Komura, K.: Transport of North Pacific ¹³⁷Cs labeled waters to the southeastern Atlantic Ocean, Prog. Oceanogr., 89, 31-37, doi:10.1016/j.pocean.2010.12.005, 2011.

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313-2343, doi:10.5194/acp-12-2313-2012, 2012.

BGD

10, 265–283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

M. Aoyama et al.

Title Page

Figures

Introduction **Abstract**

Conclusions References

Tables

14

Back Close

Full Screen / Esc

Printer-friendly Version

The-2011-Tohoku-Earthquake-Tsunami-Joint-Survey-Group: Nationwide field survey of the 2011 off the Pacific coast of Tohoku earthquake Tsunami, J. Jpn. Soc. Civil Eng. B, 67,

Tsumune, D., Aoyama, M., Hirose, K., Bryan, F. O., Lindsay, K., and Danabasoglu, G.: Transport of ¹³⁷Cs to the Southern Hemisphere in an ocean general circulation model, Prog. Oceanogr.. 89, 38-48, doi:10.1016/j.pocean.2010.12.006, 2011.

63-66, 2011.

Tsumune, D., Tsubono, T., Aoyama, M., and Hirose, K.: Distribution of oceanic ¹³⁷Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model, J. Environ. Radioactiv., 111, 100-108, doi:10.1016/j.jenvrad.2011.10.007, 2012.

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

M. Aoyama et al.

Title Page **Abstract** Introduction Conclusions References **Tables Figures** 14 **▶**I

> Close Back

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Discussion Paper

Discussion Paper

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

(0)	•
	BY

Table 1. ¹³⁴Cs and ¹³⁷Cs activity in the surface water in the North Pacific Ocean until March 2012.

Station	Latitude	Longitude	Date	134Cs Bqm ⁻³	±	Error	¹³⁷ Cs Bqm ⁻³	±	Error	Ref
VOS11-001	35.68° N	143.77° E	20110331	507	±	33	546	±	28	а
VOS11-043	34.95° N	143.86° E	20110331	132	±	9	146	±	8	а
VOS11-003	36.60° N	147.60° E	20110401	1000	±	70	1080	±	60	а
VOS11-005	37.42° N	151.08° E	20110401	32.4	±	2.6	34.7	±	2.0	b
VOS11-044	35.07° N	146.44° E	20110401	34.0	±	2.6	36.6	±	2.1	а
VOS11-045	35.29° N	151.41° E	20110401	33.4	±	2.7	40.3	±	2.3	b
VOS11-007	38.18° N	154.97° E	20110402	17.7	±	1.6	21.3	±	1.3	b
VOS11-009	38.08° N	158.58° E	20110402	1.9	±	0.5	3.5	±	0.4	b
VOS11-046	35.12° N	154.14° E	20110402	9.2	±	1.0	11.1	±	8.0	а
VOS11-047	34.89° N	158.76° E	20110402	6.6	±	8.0	6.5	±	0.5	а
VOS11-048	34.76° N	161.27° E	20110402	2.6	±	0.5	3.4	±	0.4	а
VOS11-085	33.85° N	141.31° E	20110402	BD	±	NA	1.6	±	0.2	а
VOS11-011	37.38° N	162.40° E	20110403	2.0	±	0.4	3.4	±	0.3	b
VOS11-013	36.67° N	166.15° E	20110403	2.2	±	0.4	3.9	±	0.3	b
VOS11-049	34.09° N	173.28° E	20110403	3.4	±	0.6	6.1	±	0.5	а
VOS11-086	34.33° N	144.68° E	20110403	158	±	11	181	±	9	а
VOS11-087	34.51° N	148.40° E	20110403	98.4	±	6.7	117	±	6	а
VOS11-015	35.28° N	173.53° E	20110404	2.1	±	0.4	3.8	±	0.3	b
VOS11-050	35.09° N	173.38° E	20110404	BD	±	NA	2.4	±	0.3	b
VOS11-088	34.66° N	150.97° E	20110404	73.3	±	5.6	86.8	±	4.9	b
VOS11-089	34.81° N	153.51° E	20110404	10.2	±	1.1	12.5	±	8.0	а
VOS11-090	34.98° N	156.16° E	20110404	2.7	±	0.7	6.0	±	0.6	а
VOS11-017	35.13° N	179.67° W	20110405	BD	±	NA	2.1	±	0.2	b
VOS11-051	33.85° N	179.69° E	20110405	BD	±	NA	2.0	±	0.2	b
VOS11-091	35.15° N	158.93° E	20110405	3.3	±	0.6	7.3	±	0.6	а
VOS11-092	35.32° N	161.70° E	20110405	3.4	±	0.6	5.1	±	0.4	а
VOS11-019	34.08° N	173.87° W	20110406	BD	±	NA	1.8	±	0.2	b
VOS11-093	35.66° N	167.30° E	20110406	3.4	±	0.6	4.7	±	0.4	b
VOS11-094	35.99° N	173.05° E	20110406	BD	±	NA	2.2	±	0.2	b
VOS11-095	36.35° N	178.99° E	20110406	BD	±	NA	2.2	±	0.4	а
VOS11-021	41.12° N	167.75° W	20110407	BD	±	NA	1.7	±	0.2	b
VOS11-052	33.91° N	173.89° W	20110407	BD	±	NA	1.8	±	0.2	b
VOS11-053	33.96° N	168.73° W	20110407	BD	±	NA	1.5	±	0.2	b
VOS11-096	36.70° N	174.98° W	20110407	BD	±	NA	1.8	±	0.2	b
VOS11-023	42.33° N	159.88° W	20110408	BD	±	NA	1.8	±	0.2	b
VOS11-054	33.86° N	161.73° W	20110408	1.0	±	0.3	2.3	±	0.2	b
VOS11-097	36.99° N	169.34° W	20110408	BD	±	NA	1.6	±	0.2	b
VOS11-025	43.00° N	151.95° W	20110409	BD	±	NA	1.7	±	0.2	b
VOS11-055	33.46° N	154.15° W	20110409	BD	±	NA	1.4	±	0.2	b
VOS11-098	36.84° N	163.23° W	20110409	BD	±	NA	1.9	±	0.2	b
VOS11-027	43.62° N	143.57° W	20110410	BD	±	NA	2.2	±	0.2	b
VOS11-056	32.52° N	146.59° W	20110410	BD	±	NA	1.7	±	0.2	b
VOS11-099	36.50° N	157.55° W	20110410	BD	±	NA	2.1	±	0.2	b
VOS11-100	35.88° N	151.92° W	20110410	BD	±	NA	1.7	±	0.2	b
VOS11-125	33.29° N	142.20° E	20110410	3.1	±	0.6	3.5	±	0.4	b
VOS11-029	38.18° N	134.97° W	20110411	BD	±	NA	1.4	±	0.2	b
VOS11-057	31.32° N	140.20° W	20110411	BD	±	NA	1.8	±	0.2	b
VOS11-101	34.97° N	146.43° W	20110411	BD	±	NA	1.9	±	0.2	b
VOS11-127	35.36° N	147.57° E	20110411	2.2	±	0.6	3.3	±	0.3	b
VOS11-102	33.92° N	141.12° W	20110412	BD	±	NA	1.9	±	0.2	b
VOS11-103	32.50° N	135.86° W	20110412	BD	±	NA	1.6	±	0.2	b
VOS11-129	39.01° N	152.70° E	20110412	1.8	±	0.4	3.5	±	0.3	b

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page Introduction Abstract Conclusions References

> **Tables Figures**

14 ►I

Back Close

	Latitude	Longitude	Date	¹³⁴ Cs Bqm ⁻³	±	Error	¹³⁷ Cs Bqm ⁻³	±	Error	Ref*
VOS11-058	28.94° N	130.73° W	20110413	BD	±	NA	1.4	±	0.2	b
VOS11-059	27.66° N	126.44° W	20110413	BD	±	NA	1.9	±	0.2	b
VOS11-104	31.02° N	130.83° W	20110413	BD	±	NA	2.2	±	0.2	b
VOS11-131	42.20° N	157.80° E	20110413	10.1	±	1.4	16.7	±	1.2	b
MR1103-02	36.16° N	142.03° E	20110414	6.0	±	1.0	9.0	±	1.0	С
MR1103-03	37.09° N	142.72° E	20110414	109	±	3	117	±	4	С
MR1103-04	37.86° N	143.31° E	20110414	273	±	4	284	±	5	С
VOS11-060	25.42° N	120.36° W	20110414	BD	±	NA	1.5	±	0.2	b
VOS11-105	29.24° N	126.05° W	20110414	BD	±	NA	1.8	±	0.2	b
VOS11-133	44.80° N	163.82° E	20110414	2.8	±	0.7	3.1	±	0.4	b
MR1103-05	38.21° N	143.79° E	20110415	145	±	4	148	±	5	С
MR1103-06	38.11° N	143.08° E	20110416	172	±	4	174	±	5	С
MR1103-07	38.99° N	145.78° E	20110416	53	±	2	61	±	3	С
VOS11-137	46.25° N	177.01° E	20110416	2.3	±	0.6	2.7	±	0.4	b
VOS11-141	46.23° N	169.31° W	20110416	2.4	±	0.5	3.4	±	0.3	b
MR1103-09	40.96° N	150.87° E	20110417	67	±	2	72	±	3	С
MR1103-10	41.96° N	152.46° E	20110417	17	±	2	19	±	2	c
MR1103-11	42.97° N	154.14° E	20110417	13	±	2	14	±	1	c
MR1103-12	43.99° N	154.99° E	20110417	41	±	2	43	±	3	c
MR1103-13	44.96° N	157.05° E	20110417	18	±	1	21	±	2	c
MR1103-14	45.97° N	158.50° E	20110418	14	±	2	16	±	2	c
VOS11-143	46.23° N	162.05° W	20110418	2.7	±	0.6	3.0	±	0.4	b
MR1103-15-01	47.00° N	160.00° E	20110418	8		1	9		1	C
	47.00 N 47.00° N	160.00°E	20110421	10	±	1	7	±	1	
MR1103-15-02	47.00 N 47.00° N	160.00°E			±	1	7	±		С
MR1103-15-11			20110421	8	±			±	2	С
MR1103-15-12	47.00° N	160.00° E	20110421	5	±	1	10	±	1	C
VOS11-165	30.07° N	131.81° E	20110421	BD	±	NA	1.7	±	0.2	b
VOS11-166	27.16° N	131.24° E	20110422	BD	±	NA	1.5	±	0.2	b
VOS11-167	24.23° N	130.48° E	20110422	BD	±	NA	1.6	±	0.3	b
MR1103-16	38.08° N	146.42° E	20110426	48	±	2	53	±	2	С
MR1103-17	37.00° N	146.05° E	20110426	67	±	2	67	±	2	С
MR1103-18	36.02° N	145.77° E	20110426	5	±	1	9	±	1	С
MR1103-19	35.00° N	145.40° E	20110426	4	±	1	5	±	1	С
MR1103-20	34.04° N	145.12° E	20110427	9	±	1	9	±	1	С
MR1103-21	33.02° N	144.78° E	20110427	13	±	1	17	±	1	С
MR1103-22	32.47° N	144.50° E	20110427	56	±	2	52	±	2	С
MR1103-23	31.03° N	144.82° E	20110428	6	±	1	7	±	1	С
MR1103-25-1	30.00° N	145.00° E	20110428	14	±	1	18	±	1	С
MR1103-25-2	30.00° N	145.00° E	20110428	3	±	1	5	±	1	С
MR1103-24	31.01° N	143.74° E	20110503	11	±	1	11	±	1	С
MR1103-28	33.95° N	140.25° E	20110503	6	±	1	6	±	1	С
VOS11-147	53.81° N	146.08° W	20110508	BD	±	NA	1.6	±	0.2	b
VOS11-301	36.49° N	147.73° E	20110509	30.0	±	2.6	38.1	±	2.3	b
VOS11-310	38.31° N	156.66° E	20110510	12.7	±	1.5	14.6	±	1.1	b
VOS11-151	53.41° N	178.21° W	20110511	BD	±	NA	1.2	±	0.2	b
VOS11-307	41.31° N	170.45° E	20110511	3.2	±	0.6	5.1	±	0.5	b
VOS11-313	43.66° N	170.30° W	20110511	3.3	±	0.6	6.4	±	0.5	b
VOS11-314	43.61° N	160.96° W	20110512	3.8	±	0.7	6.8	±	0.5	b
VOS11-317	42.86° N	179.62° E	20110512	164	±	11	196	±	10	b
VOS11-317	42.72° N	151.12° W	20110512	13.5	±	1.5	13.6	±	1.1	b
*	40.97° N	141.46° W	20110513	7.9	±	0.9	10.9	±	0.7	b

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page Abstract Introduction Conclusions References

Figures Tables

I◀ ►I

Back Close

Printer-friendly Version

Discussion Paper

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

BGD

10, 265-283, 2013

M. Aoyama et al.

Abstract	Introduction

Title Page

Conclusions References

Tables Figures

l∢ ≯l

• •

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

(3)	•
	BY

Station	Latitude	Longitude	Date	¹³⁴ Cs Bqm ⁻³	±	Error	¹³⁷ Cs Bqm ⁻³	±	Error	Ref
VOS11-175	15.70° N	130.45° E	20110515	BD	±	NA	1.1	±	0.2	b
VOS11-322	38.76° N	133.33° W	20110515	1.5	±	0.4	3.6	±	0.4	b
VOS11-176	21.02° N	131.77° E	20110516	BD	±	NA	1.7	±	0.3	b
VOS11-177	25.50° N	132.92° E	20110517	BD	±	NA	1.2	±	0.2	b
KH1108-260	43.37° N	155.00° E	20110815	11.2	±	8.0	14.7	±	8.0	b
KH1108-233	46.21° N	162.12° E	20110816	12.1	±	1.1	16.1	±	0.9	b
KH1108-234	48.83° N	169.97° E	20110817	0.7	±	0.2	2.0	±	0.1	b
KH1108-235	50.92° N	179.07° E	20110818	BD	±	NA	1.6	±	0.2	b
KH1108-236	53.08° N	171.65° W	20110819	BD	±	NA	0.9	±	0.1	b
KH1108-251	50.09° N	144.99° W	20110822	BD	±	NA	1.2	±	0.2	b
KH1108-251D	50.09° N	144.99° W	20110822	BD	±	NA	1.2	±	0.1	b
KH1108-273	38.62° N	144.99° W	20110829	BD	±	NA	1.7	±	0.2	b
KH1108-261	30.83° N	145.00° W	20110902	BD	±	NA	1.7	±	0.2	b
KH1108-263	34.54° N	133.34° W	20110903	BD	±	NA	1.8	±	0.2	b
KH1108-272	43.00° N	140.99° W	20110914	0.7	±	0.2	1.9	±	0.1	b
KH1108-226	42.98° N	149.20° W	20110916	BD	±	NA	1.5	±	0.1	b
KH1108-226D	42.98° N	149.20° W	20110916	0.5	±	0.2	1.6	±	0.1	b
KH1108-237	36.00° N	156.02° W	20110919	BD	±	NA	1.7	±	0.2	b
KH1108-240	35.99° N	166.23° W	20110922	0.4	±	0.2	2.0	±	0.2	b
KH1108-C065-bucket-383	36.00° N	175.00° E	20110927	2.0	±	0.3	3.9	±	0.3	b
KH1108-C070-bucket-424	35.01° N	165.00° E	20110929	9.5	±	8.0	13.3	±	8.0	b
KS1109-3101	40.03° N	165.01° E	20111012	23.3	±	1.6	30.2	±	1.6	b
VOS11-500	38.87° N	156.31° E	20111016	15.5	±	1.2	21.3	±	1.2	b
VOS11-504	39.50° N	163.97° E	20111017	17.5	±	1.3	22.8	±	1.3	b
VOS11-508	39.98° N	178.52° W	20111019	1.2	±	0.2	3.1	±	0.2	b
VOS11-512	39.49° N	162.07° W	20111021	BD	±	NA	1.8	±	0.1	b
VOS11-516	36.98° N	146.51° W	20111023	BD	±	NA	1.8	±	0.1	b
VOS11-520	32.53° N	132.63° W	20111025	BD	±	NA	1.6	±	0.1	b
VOS11-524	23.01° N	114.02° W	20111027	BD	±	NA	2.0	±	0.2	b
VOS11-589	33.12° N	144.46° E	20111108	6.3	±	0.7	9.6	±	0.6	b
VOS11-619	32.52° N	146.04° E	20111108	BD	±	NA	2.1	±	0.2	b
VOS11-587	31.00° N	152.40° E	20111109	1.7	±	0.3	3.9	±	0.3	b
VOS11-588	30.99° N	153.74° E	20111109	2.3	±	0.4	4.7	±	0.3	b
/OS11-585	31.00° N	159.51° E	20111110	2.1	±	0.4	3.9	±	0.3	b
VOS11-586	31.00° N	161.23° E	20111110	1.4	±	0.3	2.7	±	0.2	b
/OS11-584	31.00° N	167.52° E	20111111	1.6	±	0.3	3.3	±	0.3	b
/OS11-611	31.00° N	174.47° E	20111112	3.6	±	0.6	5.9	±	0.4	b
/OS11-612	31.75° N	171.22° W	20111112	BD	±	NA	1.6	±	0.2	b
/OS11-613	31.96° N	162.63° W	20111113	BD	±	NA	1.6	±	0.2	b
/OS11-608	31.78° N	154.78° W	20111114	BD	±	NA	1.3	±	0.2	b
/OS11-609	31.07° N	147.29° W	20111115	BD	±	NA	1.7	±	0.2	b
VOS11-610	29.90° N	139.70° W	20111116	BD	±	NA	1.8	±	0.2	b
VOS11-620	28.47° N	132.92° W	20111117	BD	±	NA	1.7	±	0.2	b
/OS11-621	26.59° N	125.68° W	20111117	BD	±	NA	1.5	±	0.2	b
VOS11-627	37.12° N	150.59° E	20111118	38.8	±	2.8	53.3	±	2.9	b
/OS11-627	34.74° N	144.59° E	20111118	BD	±	NA	2.3	+	0.2	b
VOS11-666 VOS11-670	34.74 N 34.75° N	144.59 E 146.59° E	20111118	0.7	±	0.2	2.0	±	0.2	b
VOS11-670 VOS11-672	34.75 N	152.04° E	20111118	1.3	±	0.2	3.1		0.2	b
/OS11-6/2 /OS11-622	34.75 N 24.36° N	152.04 E 118.96° W	20111118	BD		NA	1.4	±	0.2	b
	24.36 N 38.94° N	158.10° E	20111119	24.5	±	2.0	31.3	±	1.8	b
VOS11-629 VOS11-674	38.94 N 34.81° N	158.10 E 154.11°E	20111119	0.8	±	0.2	2.8	±	0.2	b

Table 1. Continued.

Discussion

Paper

scussion Paper

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

BGD

M. Aoyama et al.

Title Page Abstract Introduction Conclusions References Tables Figures I ■ I

◆ •

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

BD

± NA 1.6

± NA

2.0

0.2

± 0.2

h

±

20120201

20120202

33.05° N

34.26° N

VOS12-761

VOS12-766

155.28° W

146.90° W

Table 1. Continued.

Station	Latitude	Longitude	Date	¹³⁴ Cs Bqm ⁻³	±	Error	¹³⁷ Cs Bqm ⁻³	±	Error	Ref
VOS12-768	35.16° N	139.09° W	20120203	BD	±	NA	2.2	±	0.2	b
VOS12-724	48.99° N	140.82° W	20120204	BD	±	NA	1.3	±	0.1	b
VOS12-769	36.36° N	131.17° W	20120204	BD	±	NA	1.7	±	0.2	b
VOS12-726	47.53° N	131.87° W	20120205	BD	±	NA	1.4	±	0.1	b
KH1201-EPO006	0.01° N	120.00° W	20120209	BD	±	NA	1.0	±	0.1	b
KH1201-EPO007	0.00° N	95.50° W	20120210	BD	±	NA	1.0	±	0.1	b
KH1201-EPO008	0.01° N	100.01° W	20120211	BD	±	NA	1.1	±	0.1	b
KH1201-EPO009	0.06° N	105.00° W	20120212	BD	±	NA	1.1	±	0.1	b
KH1201-EPO010	0.00° N	110.03° W	20120213	BD	±	NA	1.2	±	0.1	b
KS1202-3326	19.99° N	164.98° E	20120215	BD	±	NA	1.3	±	0.1	b
KS1202-3328	18.00° N	164.99° E	20120215	BD	±	NA	1.2	±	0.1	b
KH1201-EPO011	5.11° N	115.05° W	20120215	BD	±	NA	1.1	±	0.1	b
VOS12-773	26.82° N	173.34° E	20120217	BD	±	NA	2.4	±	0.3	b
KH1201-EPO012	10.29° N	148.63° W	20120217	BD	±	NA	0.8	±	0.1	b
KH1201-EPO013	15.54° N	153.13° W	20120218	BD	±	NA	1.3	±	0.1	b
VOS12-776	27.11° N	158.80° E	20120219	0.9	±	0.3	3.2	±	0.3	b
VOS12-778	29.35° N	151.75° E	20120220	1.4	±	0.3	3.7	±	0.3	b
VOS12-1028	32.29° N	153.33° W	20120224	BD	±	NA	1.6	±	0.2	b
KH1201-EPO014	24.50° N	177.50° W	20120226	BD	±	NA	1.4	±	0.1	b
VOS12-1044	34.07° N	162.63° E	20120227	4.2	±	0.4	7.9	±	0.4	b
VOS12-1085	35.60° N	147.09° E	20120228	4.3	±	0.4	8.4	±	0.5	b
KH1201-EPO016	26.38° N	174.58° W	20120228	BD	±	NA	1.8	±	0.1	b
KH1201-EPO17	27.60° N	169.73° E	20120229	1.0	±	0.1	2.6	±	0.1	b
VOS12-1047	34.53° N	175.90° E	20120229	6.0	±	0.5	9.6	±	0.5	b
VOS12-1089	36.52° N	154.17° E	20120229	9.2	±	0.7	16.7	±	0.9	b
VOS12-1093	37.50° N	161.82° E	20120301	6.8	±	0.6	11.4	±	0.6	b
KH1201-EPO19	30.11° N	159.62° E	20120302	1.6	±	0.1	3.5	±	0.2	b
VOS12-1053	33.42° N	163.89° W	20120302	BD	±	NA	2.1	±	0.1	b
VOS12-1097	39.46° N	177.47° E	20120302	8.6	±	0.7	13.6	±	0.8	b
KH1201-EPO20	31.41° N	154.28° E	20120303	3.4	±	0.3	6.6	±	0.4	b
KH1201-EPO21	32.49° N	149.82° E	20120304	1.9	±	0.2	3.9	±	0.2	b
VOS12-1068	30.09° N	148.73° W	20120304	BD	±	NA	1.7	±	0.1	b
KH1201-EPO22	33.77° N	144.39° E	20120305	0.6	±	0.1	2.4	±	0.1	b
VOS12-1101	41.49° N	166.02° E	20120305	1.2	±	0.2	3.0	±	0.2	b
VOS12-1101 VOS12-1070	27.30° N	136.36° W	20120306	BD	±	NA	1.5	±	0.1	b
VOS12-1070 VOS12-1105	42.12° N	149.75° E	20120307	BD	±	NA	1.6	±	0.1	b
VOS12-1103 VOS12-1062	23.72° N	120.96° W	20120307	BD	±	NA	1.6	±	0.1	b
VOS12-1002 VOS12-1109	40.45° N	133.84° E	20120309	BD	±	NA	1.7	±	0.1	b
VOS12-1103 VOS12-1113	31.92° N	136.82° W	20120303	BD	±	NA	1.6	±	0.1	b
VOS12-1115 VOS12-1117	32.97° N	152.40° E	20120318	BD	±	NA	1.7	±	0.1	b
VOS12-1117 VOS12-1119	34.06° N	161.83° E	20120310	0.8	±	0.2	2.7	±	0.1	b
VOS12-1119 VOS12-1123	34.86° N	177.27° E	20120319	3.4	±	0.2	5.8	±	0.2	b

a: Aoyama et al. (2012a)

b: this study

c: Honda et al. (2012)

Discussion Paper

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and 134Cs

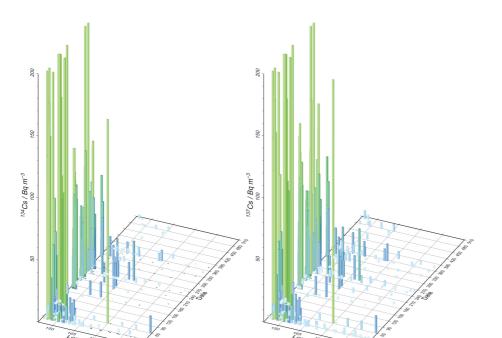
M. Aoyama et al.

Title Page

Introduction

References

Figures


►I

Abstract

Conclusions

Tables

I◀

Fig. 1. ¹³⁴Cs (left) and ¹³⁷Cs (right) activity in the surface water during the period from 11 March 2011 (day 0) to 31 July 2012 (day 510).

BGD

10, 265-283, 2013

Pathway of plume of Fukushima ¹³⁷Cs and ¹³⁴Cs

M. Aoyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I◀

Back Close

Full Screen / Esc

Printer-friendly Version

